Graeme Payten

Wastewater Land Capability Assessment: Lot 711, DP1128593, South Pambula, NSW

S.

arte

WASTEWATER

GEOTECHNICAL

CIVIL

PROJECT MANAGEMENT

P1404330JR02V02 February 2022

Copyright Statement

Martens & Associates Pty Ltd (Publisher) is the owner of the copyright subsisting in this publication. Other than as permitted by the Copyright Act and as outlined in the Terms of Engagement, no part of this report may be reprinted or reproduced or used in any form, copied or transmitted, by any electronic, mechanical, or by other means, now known or hereafter invented (including microcopying, photocopying, recording, recording tape or through electronic information storage and retrieval systems or otherwise), without the prior written permission of Martens & Associates Pty Ltd. Legal action will be taken against any breach of its copyright. This report is available only as book form unless specifically distributed by Martens & Associates in electronic form. No part of it is authorised to be copied, sold, distributed or offered in any other form.

The document may only be used for the purposes for which it was commissioned. Unauthorised use of this document in any form whatsoever is prohibited. Martens & Associates Pty Ltd assumes no responsibility where the document is used for purposes other than those for which it was commissioned.

Limitations Statement

The sole purpose of this report and the associated services performed by Martens & Associates Pty Ltd is provide a wastewater report in accordance with the scope of services set out in the contract / quotation between Martens & Associates Pty Ltd and Graeme Payten (hereafter known as the Client). That scope of works and services were defined by the requests of the Client, by the time and budgetary constraints imposed by the Client, and by the availability of access to the site.

Martens & Associates Pty Ltd derived the data in this report primarily from a number of sources which may include for example site inspections, correspondence regarding the proposal, examination of records in the public domain, interviews with individuals with information about the site or the project, and field explorations conducted on the dates indicated. The passage of time, manifestation of latent conditions or impacts of future events may require further examination / exploration of the site and subsequent data analyses, together with a re-evaluation of the findings, observations and conclusions expressed in this report.

In preparing this report, Martens & Associates Pty Ltd may have relied upon and presumed accurate certain information (or absence thereof) relative to the site. Except as otherwise stated in the report, Martens & Associates Pty Ltd has not attempted to verify the accuracy of completeness of any such information (including for example survey data supplied by others).

The findings, observations and conclusions expressed by Martens & Associates Pty Ltd in this report are not, and should not be considered an opinion concerning the completeness and accuracy of information supplied by others. No warranty or guarantee, whether express or implied, is made with respect to the data reported or to the findings, observations and conclusions expressed in this report. Further, such data, findings and conclusions are based solely upon site conditions, information and drawings supplied by the Client etc. in existence at the time of the investigation.

This report has been prepared on behalf of and for the exclusive use of the Client, and is subject to and issued in connection with the provisions of the agreement between Martens & Associates Pty Ltd and the Client. Martens & Associates Pty Ltd accepts no liability or responsibility whatsoever for or in respect of any use of or reliance upon this report by any third party.

Wastewater Land Capability Assessment: Lot 711, DP1128593, South Pambula, NSW P1404330JR02V02 – February 2022 Page 2 @ February 2022
 Copyright Martens & Associates Pty Ltd All Rights Reserved

Head Office Suite 201, 20 George Street, Hornsby, NSW 2077, Australia ACN 070 240 890 ABN 85 070 240 890

Phone: +61-2-9476-9999

Fax: +61-2-9476-8767 Email: mail@martens.com.au Web: www.martens.com.au

	Document and Distribution Status						
Author(s)		Reviewer(s)		Project Manager		Signature	
Mark Laidlaw		Gray Taylor Andrew Norris		Gray Taylor		abray	igh.
					Documer	t Location	
Revision No.	Description	Status	Release Date	File Copy	Graeme Payten	Garret Barry Planning Services Pty Ltd	
1	Client Review	Draft	16.12.21	1P, 1H, 1E	1P	1P	
1	Wastewater Land Capability Assessment	Final	11.01.22	1P, 1H, 1E	1P	1P	
2	Wastewater Land Capability Assessment	Final	24.02.22	1P, 1H, 1E	1P	1P	

Distribution Types: F = Fax, H = hard copy, P = PDF document, E = Other electronic format. Digits indicate number of document copies.

All enquiries regarding this project are to be directed to the Project Manager.

Contents

1	OVERVIEW	6				
1.1	Background	6				
1.2	Development Proposal	6				
1.3	Reference Guidelines	6				
2	SITE DESCRIPTION	7				
2.1	Summary	7				
2.2	Field Investigations	8				
2.3	Subsurface Conditions	8				
2.4	Climate Data	9				
2.5	Hydrogeology	9				
3	WASTEWATER ASSESSMENT	11				
3.1	Wastewater Treatment Options	11				
3.2	Wastewater Disposal Options	11				
3.3	Soil Chemical Capability Assessment	12				
3.4	Land Capability Assessment for Effluent Reuse	12				
3.5	Pathogen Modelling	14				
3.6	Buffer Setbacks for Effluent Reuse Area	15				
3.7	Hydraulic Load Estimations	16				
3.8	Effluent Application Rates	16				
3.9	Nutrient Modelling Summary	18				
4	RECOMMENDATIONS	19				
4.1	Irrigation Requirements	19				
4.2	Absorption Trench Requirements	20				
5	CONCLUSION	22				
6	REFERENCES	24				
7	ATTACHMENT A – FIGURES	25				
8	ATTACHMENT B – BOREHOLE LOGS	28				
9	ATTACHMENT C – GROUNDWATER BORE LOG	38				
10	ATTACHMENT D – PATHOGEN TRANSPORT MODELLING	40				
11	11 ATTACHMENT E – NUTRIENT MODELLING CALCULATIONS					

Tables

Table 1: Site description summary.
Table 2: Observed subsurface conditions.
Table 3: Summary of typical soil horizon characteristics9
Table 4: Comparison of monthly rainfall and evaporation data for the site9
Table 5: Available hydrogeological information
Table 6: Assumed primary and secondary treatment standards
Table 7: Summary of soil assessment
Table 8: Site and soil suitability in accordance with NSW DLG et al. (1998)13
Table 9: Summary of modelling inputs and assumptions used in pathogen transport modelling
transport modelling
transport modelling
transport modelling
transport modelling

1 Overview

1.1 Background

Martens & Associates has prepared this wastewater assessment to support a rezoning application and development application to enable a future subdivision at Lot 711, DP 1128593, South Pambula, NSW. This report documents feasible onsite wastewater options for the proposed subdivision.

1.2 Development Proposal

The proposal seeks to rezone the site to allow the development of a rural subdivision.

1.3 Reference Guidelines

The assessment is prepared in accordance with the following guidelines:

- Australian/ New Zealand Standard 1547 (2012) On site Domestic Wastewater Management.
- Bega Valley Shire Council (2013) Bega Valley Development Control Plan (Revised 2019).
- Department of Local Government, NSW Environment Protection Authority, NSW Health Department, NSW Department of Land and Water Conservation and the NSW Department of Urban Affairs and Planning (1998) - Environment and Health Protection Guidelines -On-site Sewage Management for Single Households. [referred to as DLG et al. (1998)].

2 Site Description

2.1 Summary

Site description is provided in Table 1 with a site plan provided in Map 01 (Attachment A).

Table 1: Site description summar	у.
----------------------------------	----

Element	Description/Detail
Site Area	Approximately 40.2ha
Lot/DP	Lot 711, DP1128593
Existing site development	Single storey dwelling and associated sheds and cottage in northern portion of site.
Aspect	East
Typical slopes	Variable - 6 - 32%
Existing vegetation	Generally cleared, dense vegetation to the north west and south west.
Neighbouring environment	The site is surrounded by rural properties to the north and east and bushland to the west and south.
	Yowaka River borders the southern boundary.
Local Government Area (LGA)	Bega Valley Shire Council.
Easements	None based on provided survey.
Drainage	Drainage via sheet flow to natural intermittent drainage channel running generally west to north east between site ridge lines draining to the Yowaka River.
Groundwater	No groundwater was encountered in boreholes during the site investigation.
Geology	The Bega & Mallacoota 1:250,000 Geological Sheet Series Sheet SJ/55-4 describes the geology at the site as Boyd Volcanic Complex consisting of undifferentiated acid volcanics, basalts, quartz porphyrites and minor sediments.

2.2 Field Investigations

A site inspection was undertaken on the September 23, 2014 and included:

- Walkover inspection to assess existing conditions, topography, geology, soil characteristics, hydrology and vegetation.
- Excavation of nine boreholes (BH) with a hydraulic auger to allow for characterisation of underlying soils.
- Collection of representative soil samples from boreholes for future reference.

Borehole testing locations are shown in Map 01 (Attachment A) and borehole logs are provided in Attachment B.

2.3 Subsurface Conditions

Borehole locations were selection to allow characterisation of existing soil landscapes. Observed subsurface conditions are summarised in Table 2 and soil characteristics for observed soil are summarised in Table 3.

landscape	Borehole	Material and Depth (m)			
Landscape	Borenole	Sandy Clay Loam	Clay Loam	Weathered Basalt	
	BH101	0.0 - 0.1	0.1 – 0.8	>1.4	
Crest	BH109	0.0 - 0.2	0.2 – 1.1	>1.1	
	BH106	0.0 - 0.1	0.1 – 1.7	>1.7	
	BH103	0.0 - 0.1	0.1 – 1.5	>1.5	
Mid crest	BH107	0.0 - 0.1	0.1 – 1.2	>1.2	
	BH105	0.0 - 0.1	0.1 – 1.4	>1.4	
	BH104	0.0 - 0.3	0.3 -1.8	>1.8	
Low lying	BH108	0.0 - 0.1	0.1 – 0.8	>0.8	
	BH102	0.0 - 0.8	0.8 – 2.5	>2.5	

 Table 2: Observed subsurface conditions.

<u>Notes</u>

^{1.} Material depths vary across the site.

Table 3: Summary of typical soil horizon characteristics.

Layer	Agricultural Classification	Soil Permeability Category 1
Sandy Clay Loam	SCL	4b
Clay Loam	CL	4a

<u>Notes</u>

^{1.} In accordance with Table 8 of NSW Department of Local Government et al. (NSW DLG et al., 1998).

2.4 Climate Data

The nearest rainfall station with adequate data is the Pambula Post Office (station number 069024, 1909 - 2012) and evaporation data was taken from the Bureau of Meteorology monthly evaporation maps (based on records from 1975 - 2005). These stations are considered representative of the site. A comparison of median rainfall and evaporation is provided in Table 4.

Table 4: Comparison of monthly rainfall and evaporation data for the site.

Month	Average Monthly Rainfall (mm)	Average Monthly Evaporation (mm)
January	81.6	180
February	84.1	150
March	88.8	125
April	79.2	70
May	66.0	50
June	77.3	40
July	53.6	40
August	48.6	60
September	53.9	80
October	66.2	120
November	78.3	165
December	76.0	170
Annual	853.6	1250

2.5 Hydrogeology

Review of WaterNSW Real-time Water Database, indicated one groundwater bore with available information within 500 m of the site, with the groundwater bore summarised in Table 5. The location of the groundwater bore is shown on Map 01 (Attachment A), and the groundwater bore log is presented in Attachment C.

 Table 5: Available hydrogeological information.

Bore Identification	Record Date	Intended Use	Słanding Water Level (mbgl)	First Water Bearing Zone (mbgl) and Substrate	Distance and Direction from Site
GW110974.1.1	2009	Stock / Domestic	14.9	19.8 – 33.5 Rhyolite	70 m southeast

3 Wastewater Assessment

3.1 Wastewater Treatment Options

Treatment system requirement are dictated by the selected method for effluent disposal. Primary and secondary treatment options may include (but are not limited to):

Primary options:

- Septic tank.
- Composting and Hybrid toilet system with greywater treatment systems.

Secondary options:

• Aerated wastewater treatment system (AWTS).

Typical primary and secondary treatment standards are provided in Table 6. This information is also used for the nutrient balance assessment.

Parameter	Primary Standard	Secondary Standard
BOD₅ (mg/L)	150	30
Suspended solids (mg/L)	50	30
Faecal coliforms (CFU/100mL)	105-107	30
Total phosphorus (mg/L)	15	12
Total nitrogen (mg/L)	50	27

 Table 6: Assumed primary and secondary treatment standards.

3.2 Wastewater Disposal Options

Disposal options considered on the site include surface irrigation, subsurface irrigation and absorption systems. Secondary treatment is required for surface irrigation system and primary or secondary treatment is acceptable for subsurface irrigation or absorption based system.

3.3 Soil Chemical Capability Assessment

A summary of soil chemical properties is provided in Table 7.

 Table 7: Summary of soil assessment.

Parameter	Value	Limitations ¹
pH (1:5)	4.5 - 5.8	Moderate
ECe (dS/m)	<0.1	Minor
CEC (cmol(+)/kg)	16.40 - 21.70	Minor
P-sorption (mg/kg)	359 - 590	Minor

<u>Notes</u>

^{1.}DLG et al. (1998).

Values are obtained from NSW Land and Water Conservation (1997) Soil Landscapes of Bega-Goalen Point 1:100,000 Sheet, Appendix 7.2.7 and 7.2.10 for the Bald Hills soil landscapes as found on the site (BH1 & BH3).

Site observations indicated no restriction to vegetation growth as a result of naturally acidic soil pH. The 'limitation' assessed by comparison to DLG et al. (1998) is therefore not considered to warrant any mitigation or to pose any significant limitation to onsite wastewater disposal.

3.4 Land Capability Assessment for Effluent Reuse

Site and soil suitability for effluent reuse have been determined according to Tables 4 and 6 of NSW DLG et al. (1998) and are summarised in Table 8.

Soil Feature	Potential Irrigation Areas	Limitation Rating
Flood potential	NA	Minor
Sun and wind exposure	High	Minor
Slope (%)	6-32%	Minor - Moderate ²
Landform	Convex side slopes	Minor
Erosion potential	Little present	Minor
Site drainage	Generally, well drained	Minor
Fill	None observed	Minor
Rock outcrops	< 10%	Minor
Geology	No major discontinuities	Minor
Depth to bedrock (m)	> 1	Minor
Depth to water table (m)	> 1	Minor
Soil permeability category	Category 4a and 4b	Minor
Coarse fragments (%)	0 – 20%	Minor

Table 8: Site and soil suitability in accordance with NSW DLG et al. (1998).

<u>Notes</u>

^{1.} All proposed effluent management areas (EMAs) to be located above 1 in 100 year flood level.

^{2.} Slope areas within proposed EMAs will be less than 20%, therefore minor to moderate limitation depending on application system selected.

Land capability assessment indicates a moderate slope limitation. The area for major slope limitations (i.e. > 20%) for both irrigation and absorption is shown in Map 02 (Attachment A). All other soil features indicate minor limitations. A plan detailing appropriate effluent management areas (EMA)s for the proposed lots is shown in Map 03 (Attachment A).

To address variable slope the following system selection is recommended for areas of each slope 'category':

- \circ < 6 % any application system.
- 6 10% no surface irrigation; absorption or subsurface irrigation (including LPED) application only.
- 10 20% no surface irrigation; subsurface irrigation (including LPED) application rate reduced by 20%. Site specific risk assessment for absorption system.

- 20 30% no surface irrigation or absorption systems; subsurface irrigation (including LPED) application rate reduced by 50%. Site specific risk assessment for absorption system.
- \circ > 30% generally unsuitable for effluent application system.

3.5 Pathogen Modelling

A Beavers Gardner model has been completed to assess the risks posed to the existing groundwater supply bore by pathogens in applied effluent. This model determines the time taken to achieve the required magnitude of pathogen reduction in soil and the distance travelled by the effluent in that time to determine minimum buffer distances to effluent application systems. The following two equations are used:

1. Time taken to achieve pathogen reduction:

$$t = \frac{\ln{(\frac{M_t}{M_0})}}{-k}$$

Where:

t = time to achieve required pathogen reduction (days);

 $\frac{M_t}{M_0}$ = magnitude of reduction required; and,

-k = decay rate coefficient = $ln(10^{(-0.181+0.0214 x groundwater temperature)})$

2. Distance travelled by effluent:

Where:

t = time to achieve required pathogen reduction (Equation 1);

K = saturated hydraulic conductivity of soil in effluent disposal field (m/day);

i = hydraulic gradient of groundwater between effluent disposal field and observation point (m⁻¹); and,

 η_e = effective porosity of aquifer between effluent disposal field and observation point (dimensionless).

Model inputs and assumptions are provided in Table 9 with the model results provided in Attachment D.

Table 7. Summary of modelling inputs and assumptions	s used in participen nansport modelling.
Model Parameter	Assumed value
Initial concentration of pathogen (CFU / 100 $\mbox{mL})^1$	1 x 10 ⁷
Required magnitude of reduction (log ₁₀)	7
Minimum groundwater temperature (°C)	12
Maximum groundwater temperature (°C)	22
Saturated hydraulic conductivity of soil (m/day)	1
Hydraulic gradient² (m-1)	0.16
Effective aquifer porosity	0.2

 Table 9:
 Summary of modelling inputs and assumptions used in pathogen transport modelling.

<u>Notes</u>

^{1.} Typical concentration of faecal coliforms following primary treatment by a septic tank (NSW DLG., 1998).

²· Assumed based on surface gradients.

Results of the modelling show that for a groundwater temperature of 12 °C and a log-7 reduction of pathogens, a buffer of approximately 74 m would be required between effluent disposal fields and the existing groundwater bore at the site. Modelling calculations are presented in Attachment D.

3.6 Buffer Setbacks for Effluent Reuse Area

EMAs are to be located with setbacks in accordance with NSW DLG et al. (1998), Bega Valley Shire Council Development Control Plan 2019 (BDCP, 2019) and site specific pathogen modelling, with recommended setbacks summarised in Table 10. Buffers are applied to the site in Map 02 and 03 (Attachment A).

	Buffer Distance (m)									
Feature ¹	Surface and Subsurface Irrigation	Spray Irrigation	Absorption							
Yowaka River ²	150	150	150							
Groundwater Bore ³	74	74	74							
Dams and Waterways	40	40	40							
Dwellings	6 / 34	15	6 / 34							
Swimming Pools	6 / 34	6	6 / 34							
Driveways	6 / 34	6 / 34	6 / 34							
Property Boundaries	6 / 34	6 / 34	12/ 64							

Table 10: Adopted buffer setbacks	in accordance with	NSW DIG et al (1998)
Table 10. Adopted botter serbacks		$\prod_{i=1}^{n} D_{i} \cup D_{i} \cup \bigcup_{i=1}^{n} \bigcup_{i=1}^{n} \bigcup_{j=1}^{n} \bigcup_{i=1}^{n} \bigcup_{i=1}^{n} \bigcup_{j=1}^{n} \bigcup_{j=1}^{n} \bigcup_{j=1}^{n} \bigcup_{i=1}^{n} \bigcup_{j=1}^{n} $

<u>Notes</u>

 $^{\scriptscriptstyle 1}$ In accordance with NSW DLG et al. (1998) except where otherwise noted.

² BDCP (2019) required a 150m setback from the Yowaka River.

³ 74 m buffer based on pathogen modelling in section 3.5.

 4 x / y = downslope / upslope of effluent management area.

3.7 Hydraulic Load Estimations

Council's BDCP (2019) requires new onsite wastewater management systems to be designed based on an assumed future hydraulic load of 1,000 L/day.

3.8 Effluent Application Rates

3.8.1 Design Irrigation Rates

Recommended design irrigation rates (DIRs) according to AS/NZS 1547 (2012) are given in Table 11 for subsurface irrigation of secondary effluent and for subsurface LPED irrigation of primary treated effluent. For spray irrigation top soil rates are applicable, for subsurface irrigation, subsoil rates apply.

Table 11: Design irrigation rates for the site.

Depth	Texture	Structure	Indicative		gation Rate m/day)²
(m) ¹	Texture	Silociore	Permeability (K _{sat}) (m/d)	Primary Effluent ³	Secondary Effluent ⁴
0.0 – 0.1 (surface)	Sandy Clay Loam	Weakly Structured	0.12 - 0.5	3.0	3.5
0.1 - >1.0 (subsurface)	Clay Loam	Moderately Structured	0.5 – 1.5	3.0	3.5
Design				3.0	3.5

<u>Notes</u>

¹ Depths of soil horizons varies across the site.

² Subject to DIR reductions in section 3.4 in response to slope.

³ Primary effluent to LPED irrigation area.

^{4.} Secondary effluent to subsurface irrigation area.

For a design hydraulic load of 1,000 L/day, secondary treated effluent irrigation fields are to be 285 m², for primary treated irrigation fields an area of 335 m² is required. In accordance with AS/NZS 1547 (2012), an area of 335 m² is to be provided as a reserve area for LPED irrigation giving a total required area of 670 m² per dwelling. Clause 5.5.3.4 of AS/NSZ 1547 (2012) notes that reserve areas are not required for secondary treated effluent applied to irrigation areas.

3.8.2 Design Loading Rates

Recommended design loading rates (DLRs) for absorption system according to AS/NZS 1547 (2012) are given in Table 12. As absorption systems apply to subsoil, the DLR for 0.5 - 1.0 m is applicable to design.

Dopth (m)	Texture	Structure	Indicative Permeability		ading Rate nm/day)²
Depth (m) ¹	Texiore	Siluciole	(K _{sat}) (m/d)	Primary Effluent	Secondary Effluent
0.0 - 0.1	Sandy Clay Loam	Weakly Structured	0.12 – 0.5	6	10
0.1 - >1.0	Clay Loam	Moderately Structured	0.5 – 1.5	10	15
Design				10	15

 Table 12: Design loading rates for the site.

<u>Notes</u>

^{1.} Depths of soil horizons varies across the site.

^{2.} Subject to DLR reductions in section 3.4 in response to slope.

For a design hydraulic load of 1,000 L/day an absorption area of 100 m² is required for primary effluent and 67 m² for secondary effluent. This may be provided as trench(s) or absorption bed(s).

3.9 Nutrient Modelling Summary

Assessment of nutrient balance has been undertaken in accordance with DLG et al. (1998). Modelling completed assesses the required areas for the assimilation of applied nutrient.

Detailed modelling outputs are provided in Attachment C of this report. Sustainable disposal area for primary and secondary effluent are summarised in Table 13. Primary and secondary treatment results in differing nutrient content in effluent and therefore differing areas to achieve nutrient uptake. Assessment of required areas has been completed.

950

620

Area Rea	quired (m²)
Primary Treatment	Secondary Treatment

Table 13: Area required for sustainable effluent application.

Nitrogen uptake

Phosphorus saturation

430

490

4 Recommendations

Recommendations are provided for primary or secondary treated effluent management systems. System design provided for sustainable hydraulic and nutrient loading rates.

4.1 Irrigation Requirements

The irrigation field is to be constructed in accordance with AS/NZS 1547 (2012) and the following minimum specifications.

- 4.1.1 All Irrigation Systems General Requirements
 - All effluent distribution and irrigation lines are to be fixed in place by burial to a depth of no less than 100 mm.
 - The irrigation area cannot be used for growing fruit, vegetables or other edible plants.
 - Effluent shall be pumped from the treatment system through an appropriately sized (25 mm minimum diameter) poly main line to the top of the disposal field(s). The main is to be fitted with suitable non return valves.
 - Distribution mains and irrigation laterals are to be installed by a suitably qualified individual to meet the standards of AS/NZS 1547 (2012).
 - The effluent dispersal pump and delivery mains are to be sized to provide adequate flow through the proposed irrigation system.
 - Based on nutrient and hydraulic modelling and AS/NZS 1547 (2012) a minimum irrigation field area of 490 m² (secondary treatment) and 950 m² (primary treatment) per dwelling is required based on the limiting design criteria being nutrient assimilation.
- 4.1.2 Spray Irrigation (up to 6% slopes)
 - Effluent is to be reticulated to a series of low through, coarse droplet sprinklers located across the irrigation field giving even effluent distribution.
 - Irrigation field to be fenced to prevent casual pedestrian access.

- Spray irrigation only to be used in conjunction with secondary effluent treatment.
- 4.1.3 Shallow Subsurface Irrigation (up to 30% slopes)
 - Effluent is to be distributed into a series of lateral irrigation lines parallel to site contours.
 - Effluent is to be distributed using a pressure compensating subsurface irrigation line such as "Netafim", "Amiad PC" or "Wasteflow". These products have been specifically designed for the distribution of secondary effluent and allow for the even distribution of flows along and between irrigation lines.
 - Irrigation lines are to be spaced 1.0 m apart (centres) across the irrigation field.
 - The irrigation field irrigation lines are to be installed directly into soil at a depth of 150 mm.
 - A (minimum 25 mm) manifold is to be installed along the side of the field with distribution lateral lines running from it.
 - A 25 mm reticulated flushing main with shut off valve is to be constructed for system flushing. Main is to discharge to inlet of treatment system.
 - $\circ~$ Where slopes in the irrigation field are 20 % 30 % the minimum irrigation area is to be increased to 570 m².

4.2 Absorption Trench Requirements

Trenches are to be constructed with self supporting arches with trench backfilled with 20 – 40 mm aggregate prior to placement of geotextile and 150 mm topsoil cover. Recommended typical trench dimensions are provided Table 14.

Design Loading	Hydraulic	Required trench	Trench dimensions								
Rate (DLR) (mm/day)	Load (L/Day)	base (m²)	Width (m)	Depth (m)	Length (m)						
101	1,000	100	0.6	0.6	167						
15 ²	1,000	67	0.6	0.6	112						

Table 14: Approximate	absorption	trench	dimensions
	absorption	nonch	unificitisions.

<u>Notes</u>

^{1.} Primary treated effluent.

^{2.} Secondary treated effluent.

Absorption bed may be used where sufficient level land is available. The total required trench/absorption bed surface area may be provided as multiple trenches/beds fed by a distribution box to ensure even flow to each trench. Distribution boxes should be checked as part of performance monitoring inspection to confirm that an even flow of effluent is being directed to each distribution line.

Trench design based on soil hydraulics (Table 14) does not consider nutrient assimilation. Sustainable assimilation of nutrients requires a minimum disposal area of 490 m² (secondary effluent) to 950 m² (primary effluent) which are too large for feasible absorption trench design and even effluent application.

5 Conclusion

The completed wastewater assessment concludes that appropriate onsite effluent management system is able to be accommodated on each of new allotment in the proposed subdivision. Review of capability mapping indicates that a suitable area is available for each lot for effluent management subject to the effluent treatment standard and disposal system which as summarised in Table 15.

Lot ID	Suitable EMA Available	Average Slope within Potential EMA	Treatme	ent Options		Disposal Op	otions
	(m²)	(%)	Primary	Secondary	In	rigation	
					Surface / Subsurface	Absorption	
1	> 1,000	13	\checkmark	\checkmark	X1,2	\checkmark	\checkmark
2	> 1,000	11	\checkmark	\checkmark	X 2	\checkmark	\checkmark
3	> 1,000	10	\checkmark	\checkmark	X ²	\checkmark	X ³
4			E	existing System			
5			E	Existing System			
6	> 1,000	14	Х	\checkmark	X ^{1,2}	\checkmark	X3
7	> 1,000	15	\checkmark	\checkmark	X1	\checkmark	\checkmark
8	600	8	Х	\checkmark	X2	\checkmark	Х3
9	> 1,000	14	\checkmark	\checkmark	X ^{1,2}	\checkmark	\checkmark
10	600	15	Х	\checkmark	X1,2	\checkmark	Х3
11	> 1,000	17	\checkmark	\checkmark	X ^{1,2}	\checkmark	\checkmark
12	> 1,000	17	\checkmark	\checkmark	X1,2	\checkmark	\checkmark
13	> 1,000	16	\checkmark	\checkmark	X1	\checkmark	\checkmark
14	> 1,000	13	Х	\checkmark	X ^{1,2}	\checkmark	X ³
15	> 1,000	11	\checkmark	\checkmark	X1,2	\checkmark	\checkmark

Table 15: Effluent treatment and disposal options

<u>Notes</u>

 $^{\rm l.}$ Spray irrigation not likely to be an acceptable disposal option due to average slope > 6% (DLG et al., 1998). Where sufficient land < 6% is identified spray irrigation may be possible.

^{2.} Spray irrigation not a disposal option due to dwelling located within 15 m setback distance (DLG et al., 1998).

^{3.} Absorption disposal not suitable due to setback distance less than 12 m from property boundary.

General requirements for onsite effluent disposal have been developed and are detailed in this report. Identified soil and land capability constraints have been assessed in accordance with relevant guidelines. Design of typical wastewater management solution have considered

nutrient and soil assessments. This assessment is considered preliminary and a more detailed wastewater management assessment would be required at the development application stage for residential dwellings and then again at the Local Government Act section 68 application stage for individual systems.

6 References

- Australian/ New Zealand Standard 1547 (2012) On site Domestic Wastewater Management
- Bega Valley Shire Council (2013) Bega Valley Development Control Plan (Revised 2019). [referred to as BDCP (2019)]
- Department of Local Government, NSW Environment Protection Authority, NSW Health Department, NSW Department of Land and Water Conservation and the NSW Department of Urban Affairs and Planning (1998) - Environment and Health Protection Guidelines - On-site Sewage Management for Single Households.
- Lewis P.C. and Glen R.A. (1995) Bega & Mallacoota 1:250,000 Geological Sheet Series Sheet SJ/55-4, SJ/55-8. (New South Wales Department of Mineral Resources).
- OCRE (2021) General Arrangement: Lot 711, DP1128593, 3810 Princes Highway Griegs Flat.
- Southeast (2021) Planning Proposal Lot 711 DP 1128593: Flood Risk Assessment and Surface Water Assessment.

7 Attachment A – Figures

50 150 200 250 m 0 100

1:5000 @ A3

Sources: Aerial Image Source: Nearmap (2021); Flooding information from Southeast (2021) Planning Proposal Lot 711 DP1128593: Flood Risk Assessment and Surface Water Assessment; Lot layout and building pads provided by OCRE (2021); Waterways from SixMaps; Contours from ELVIS Lidar.

Map Title / Figure: Site Testing Plan

Мар Site Project Sub-Project Client Date

Map 01 Lot 711, DP 1128593 South Pambula, NSW Wastewater land capability assessment

> Mr. Graeme Payten 24/02/2022

1:5000 @ A3

Sources: Aerial Image Source: Nearmap (2021); Flooding information from: Southeast (2021) Planning Proposal Lot 711 DP1128593: Flood Risk Assessment and Surface Water Assessment; Lot layout and building pads provided by OCRE (2021); Waterways from SIxMaps; Contours from ELVIS Lidar.

Map Title / Figure: Onsite Sewage Constraints

Map Site Project Sub-Project Client Date

Map 02 Lot 711, DP 1128593 South Pambula, NSW Wastewater land capability assessment

> Mr. Graeme Payten 24/02/2022

1:5000 @ A3

Sources: Aerial Image Source: Nearmap (2021); Flooding information from: Southeast (2021) Planning Proposal Lot 711 DP1128593: Flood Risk Assessment and Surface Water Assessment; Lot layout provided by OCRE; Waterways from SixMaps; Contours from ELVIS lidar.

Map Title / Figure: Potential Individual Lot Effluent Management Areas

Map 03

Lot 711, DP 1128593 South Pambula, NSW Wastewater land capability assessment

Мар Site Project Sub-Project Client Date

Mr. Graeme Payten 24/02/2022

8 Attachment B – Borehole Logs

Wastewater Land Capability Assessment: Lot 711, DP1128593, South Pambula, NSW P1404330JR02V02 – February 2022 Page 28

CL	IEN	Т	C	addey S	Searl &	Jarman	Pty	Ltd	COMMENCED	23.09.14	COMPLETER	23.09	.14			REF	BH1	01
PR	OJE	СТ	W	astewa	ter Ass	sessmen	t		LOGGED	AB	CHECKED	AN				Sheet 1 o	of 1	-
SI			Lo	ot 711, I	OP 112	8593 Sou	ith F	Pambula NSW	GEOLOGY	Basalt	VEGETATIO	_	6			PROJECT NO	P1404330	
				0,010	Hydraulic				EASTING	-	RL SURFACI						40.450	
EXC						X 3.0m depth		МАТ	ERIAL DAT	- Δ	ASPECT	North	East	SAM		LOPE	10-15°	
METHOD	SUPPORT	WATER	MOISTURE	DEPTH (M)		(D)	CLASSIFICATION	MATERIA SOIL NAME, plastic colour, secondar moisture condition, ROCK NAME, grai	L DESCRIPTIO sity or particle char y and minor comp consistency/relation	N acteristics, onents, re density,	CONSISTENCY	DENSITY INDEX	түре	DEPTH (M)		RESU	TS AND	ONS
v	Nil	N	М	0.1			SCL	, , ,		akly structured,								
v	Nil	N	м	- - - - 0.8			- CL	Clay Loam - Brown	organic. n, moderately	structured.			В	0.5- 0.75	4330/101/		Bit refusal at 0.	8m.
тс	Nil	N	D	- 1.0 - - 1.4			****	BASALT - Pale gre strength, distinct										<u>1.(</u>
тс	Nil	N	D	- - 2.0 - - - - - - - - - - - - - - - - - - -				BASALT - Pale grey/ slightly Borehole terminated	y weathered.									2.(
				- - - - - - - - - - - - - - - - - - -				inferred lov	w strength ba	salt.								<u>4.</u>
N E F S C V T	H Ba A Ha C Co V-I C Tur	atural e xisting ackhoe and au oade ncrete	exposi excave bucke ger Core Carbi	ure SH vation SC et RE Ni r	JPPORT H Shoring C Shotcre 3 Rock B(1 No supp	ete X Not olts <u>▼</u> Wa ← Wa ┣ Wa	ne obs meas ter lev ter ou ter infl	ured M Moist L Low el W Wet M Mode Wp Plastic limit H High flow WI Liquid limit R Refus ow	NCE VS Ve S Sc erate F Fir St Sti sal VSt Ve H Ha F Fria	m MD Medium [ff D Dense rry Stiff VD Very Den: rd able	ISE A Aug B Bul Dense U Un D Dis Se M Mo Ux Tub	ING & TE ler sample sample disturbed sa turbed sa sture con e sample	e sample mple tent (x mm)	pp Po S S VS V DCP FD F WS V	tandard p /ane shea Dynamic penetron ield dens Vater san	cone leter ty	N USO	S AND CRIPTION
╻	EXCAVATION LOG TO BE READ IN CONJUNCTION WITH ACCOMPANYING REPORT NOTES AND ABBREVIATIONS																	
Quality Sheet No. 4				rte Martens & Ass				20 G Phor	George St,Horns ne: (02) 9476 99	SOCIATES PTY LTD sby, NSW 2077 Austra 999 Fax: (02) 9476 876 EB: http://www.marten	67		E	-		ering reho	Log le	-

С	LIEN	т	С	addey S	Sear	& J	arman	Pty	Ltd	COMMENCED	23.09.14		COMPLETE	23.09	.14			REF	BH102
Ρ	ROJE	ЕСТ	W	astewa	ter A	Asse	ssment			LOGGED	AB		CHECKED	AN				Sheet 1 c	
s	TE		Lo	ot 711, I	DP 1	1285	93 Sou	th P	ambula NSW	GEOLOGY	Basalt		VEGETATIO	Grass	5			PROJECT NO	P1404330
				010	-	aulic Au					-		RL SURFAC						
P				ISIONS		nm X 2	.5m depth		МАТ	NORTHING	- -		ASPECT	North	East	64		SLOPE	5-10°
METHOD		WATER	MOISTURE	DEPTH (M)	DRILLING		GRAPHIC LOG	CLASSIFICATION	MATERIA SOIL NAME, plastic colour, secondar moisture condition, ROCK NAME, grai	L DESCRIPTIO ity or particle char and minor comp consistency/relativ	n racteristics, ionents, ve density,		CONSISTENCY	DENSITY INDEX	ТҮРЕ	DEPTH (M)		RESUL	TS AND DBSERVATIONS
v	Nil	N	м	- - - - 0.8 - 1.0				SCL	Sandy Clay Loam - Da c	rk brown, we rganic.	akly structure	ed,			в	0.1- 0.3 0.5- 0.75	4330/10	2/ 0.1-0.3 2/ 0.5-0.75 2/ 1.0-1.2	- - - - - - 1 <u>.0</u>
v	v Ni N M -									n, moderately	structured.				в	2.0- 2.25	4330/10	2/ 2.0-2.25	- - - - - - - - - - - - - - - - - - -
				2.5															
				-					V bit refusal at 2.5	m on weathe	ered basalt.								-
				-															-
				-															-
				3.0															- 3.0
																			<u> </u>
				-															-
				-															-
				-															-
				-															-
				-															-
				-															-
				-															-
				-															-
				-															-
				4.0															4.0
																			-
				F															-
																1			-
4.5																			- 4.5
	EQUIPMENT / METHOD SUPPORT WATER MOISTURE DRILLII N Natural exposure SH Shoring N None observed D Dry RESIST X Existing excavation SC Shotcrete X Not measured M Moist L Low BH Backhoe bucket RB Rock Bolts Water level W Wet M M HA Hand auger Nii No support Plastic limit H Hig S Spade										oft L L mm MD M ff D D eryStiff VD V	ITY Very Loos ∟oose Medium De Dense /ery Dense	se A Aug B Bul lense U Uno D Dis e M Mo	ING & TE er sample isturbed urbed sa sture con	e sample mple tent	pp S VS D0	Standard S Vane she CP Dynam penetro	ic cone meter	CLASSIFICATION SYMBOLS AND SOIL DESCRIPTION
	CC Cc V V- TC Tu	Bit					→ Wat	er inflo	w	H Ha F Fri	ade		Ux Tub	e sample	(x mm)		D Field der S Water sa		Y Agricultural
\vdash	PT PL	ish tub	e				VO 11 /				00014011					// •			
+	EXCAVATION LOG TO BE READ IN CONJUNCTION WITH ACCOMPANYING REPORT NOTES AND ABBREVIATIONS																		
Sheet No.		m	2	rta	n	~					SOCIATES PT sby, NSW 2077		ia		E	ng	jine	ering	Log -
lity Sh		Ш	d	rte	113	5			Phor	e: (02) 9476 99	999 Fax: (02) 9 EB: http://www.	476 876	7					oreho	-
Qua	-	(C) Cop	oyright I	Martens & As	sociates	s Pty. Ltd	1.2014		man@man	au vv	mp.//www.						D	<i>יו בווט</i>	1C

	LIEN		-	addey \$	Sea	rl & .	Jarman	Pty	Ltd	COMMENCED	23.09.14	COMPLETED	23.09	.14			REF	BH103	3
	ROJ	ЕСТ	-				essment			LOGGED	AB	CHECKED	AN				Sheet 1		
		NT		ot 711, I	-	raulic A		ith P	Pambula NSW	GEOLOGY	Basalt	VEGETATION RL SURFACE	_	3			PROJECT N	O. P1404330	
			DIMEN	SIONS			1.4m depth			NORTHING	-	ASPECT	North	East			SLOPE	10-15°	
	E)		/AT	ON DA	_				MAT	ERIAL DAT	A				SA	MPLIN	G & TES	TING	
METHOD	SUPPORT	WATER	MOISTURE	DEPTH (M)			GRAPHIC LOG	CLASSIFICATION	SOIL NAME, plasti colour, seconda moisture condition, ROCK NAME, gra	AL DESCRIPTION city or particle characteristics, ry and minor components, consistency/relative density, ain size, texture/fabric, colour th, weathering.		CONSISTENCY	DENSITY INDEX	ТҮРЕ	DEPTH (M)		DDITIONAL	JLTS AND . OBSERVATIONS	5
V	Nil	N	М	0.1				SCL	Sandy Clay Loam - Da	ark brown, we organic.	eakly structured,			В	0.1- 0.3	4330/10	3/ 0.1-0.3		
v	Nil	Ν	м	-				CL	Clay Loam - Brow		v structured.			В	0.5- 0.75	4330/10	8/0.5-0.75		-
				_ 1.0			[в	1.0- 1.2	4330/10	8/ 1.0-1.2		- 1.0
v	Nil	N	м	- - 1.4				CL	Clay Loam - Whit wi	te, pale grey, eathered.	moderately								-
F				-					V bit refusal at 1.4	4m on weathe	ered basalt.								-
	X E BH B HA H S S CC C	atural Existing ackhoe and au pade pade Dister Bit ingster	exposi excave bucke ger e Corei carbi	ure SI vation So et Ri Ni	B Ro	oring otcrete ock Bolt o suppo	s ⊻ Wat rt ∢ Wat → Wat	e obse measu ter leve ter out ter infle	ured M Moist L Low el W Wet M Mod Wp Plastic limit H High flow WI Liquid limit R Refu ow	ANCE VS Vo S S erate F Fi St St sal VSt Vo H Ha F Fri	ery Stiff VD Very Dens ard able	B Bulk Dense U Und D Dist se M Mois Ux Tub	er sample sample isturbed urbed sa sture con e sample	e sample mple ttent (x mm)	pp S VS DC FE W	Standard S Vane she CP Dynam penetro D Field den S Water sa	c cone meter sity	CLASSIFICATI SYMBOLS AND SOIL DESCRIP N USCS Y Agricultur	D PTION
0.4	EXCAVATION LOG TO BE READ IN CONJUNCTION WITH ACCOMPANYING REPORT NOTES AND ABBREVIATIONS																		
Quality Sheet No.				rte Martens & As			td . 2014		20 C Pho	George St,Horn ne: (02) 9476 9	SOCIATES PTY LTD sby, NSW 2077 Austral 999 Fax: (02) 9476 876 EB: http://www.martens	67		E	ng		ering oreho	g Log - ole	

			-				larman ssment		Ltd						23.09.14 AB		_	MPLETED	23.09. AN	.14			REF		H104	ł
SI			-				593 Sou		Pamb	ula NS	w		GEOLO		Basalt		VEG	ETATION					PROJECT N		404330	
	JIPME				· ·	aulic A	-						EASTIN		-		_	SURFACE	-	_						
EXC				ISIONS		mm X 1	1.8m depth					МАТ	NORTH	ING	- Δ		ASP	ECT	North	East	SA		SLOPE	5-10°		
METHOD	SUPPORT	WATER	MOISTURE	DEPTH (M)	DRILLING		GRAPHIC LOG	CLASSIFICATION		n	OIL NAN colour, noisture	IATERIA ME, plastic , secondar condition, IAME, gra	L DESC ity or part y and min consisten	ERIPTION ticle chara nor compo ncy/relative xture/fabri	N acteristics, onents, e density,		CONSIGNATION	CONSISTENCE	DENSITY INDEX	ТҮРЕ	DEPTH (M)			JLTS AI		3
v	Nil	N	М	- - 0.3				SCL	s	Sandy C	lay Lo		ark brov organic		akly stru	ctured,				В	0.1- 0.3	4330/10	4/ 0.1-0.3			-
v	Nil	Ν	М	- - - 1.0 - - 1.4				CL		Clay	Loam	- Brow	n, mod	erately	structur	ed.				В	0.5-0.75	4330/10	4/0.5-0.75			
v	Nil	Ν	м	- - 1.8				CL		Clay	Loam	n - Whit weath	e, pale lered b	grey, r asalt.	noderat	ely				В	1.5- 1.7	4330/10	4/ 1.5-1.7			-
N X E	i E IH Ba IA Ha	MENT tutural e kisting ade	/ ME exposi excas	ure SI vation Si et Ri	B Ro		s 👽 Wat	e obs measi er lev	erved ured el	MOISTUR D Dry M Mois W Wet W Liquit	E t ic limit	DRILLING RESISTA L LOW M Mode H High	S INCE erate	CONSIS VS Ver S Soi F Firr S Stiff	ry Soft ft n f	DENSITY VL Very L L Loose	n Dense	U Undi	er sample sample sturbed s urbed sau	e sample mple	pr S V:	 Pocket pr Standard S Vane she CP Dynam penetrc 	ic cone	SY	ASSIFICATI MBOLS AND IL DESCRIF	D
T N	C Co V-E C Tur T Pu	Bit Igsten	Carbi			E	→ Wat	er infl	DW					H Har F Fria	rd ble	NYING RE		Ux Tube			W	D Field der S Water sa	sity	Y	Agricultur	al
Quality Sheet No. 4				rte Martens & As			d.2014				ma	20 G Phor	George S ne: (02)	St,Horns 9476 99	by, NSW 99 Fax: (S PTY LTI 2077 Aust (02) 9476 8 www.marte	ralia 3767	.au		E	ng		ering oreho	-	og -	

				1				Jarman		Ltd		23.09.14 AB	COMPLETE	D 23	.09.14			REF	BH105	
	PRO SITE		CI	-				essmen 593 Sou		Pambula NSW	GEOLOGY	AB Basalt	VEGETATIO	-	ass			Sheet 1 PROJECT NO		
-	QUIP		IT		,	-	draulic /				EASTING	-	RL SURFAC	_					1	
F					SIONS		5mm X	1.4m depth			NORTHING	-	ASPECT	No	orth East				5-10°	
		SUPPORT	WATER	MOISTURE	DEPTH (M)			GRAPHIC LOG	CLASSIFICATION	MATER SOIL NAME, plat colour, secont moisture conditio ROCK NAME, c	IAL DESCRIPTIC sticity or particle cha dary and minor com n, consistency/relati rrain size, texture/fati ngth, weathering.	DN racteristics, oonents, ve density,	CONSISTENCY	DENSITY INDEX	ТҮРЕ	DEPTH(M)			ING LTS AND OBSERVATIONS	
F	v	Nil	Ν	м	0.1				SCL	Sandy Clay Loam - I	,	eakly structured,			В	0.1- 0.3	4330/10	5/ 0.1-0.3		
	v	Nil	Ν	М	- - - - - - - - - - - - - - - - - - -					Clay Loam - Bro	organic. wn, moderately	y structured.			В	0.5-0.75	4330/10	5/ 0.5-0.75		
										V bit refusal at 1	.4m on weath	ered basalt.								
	N BH HA S CC V TC	Na Ex Bao Hai Sp Cor V-B Tun	tural e isting ckhoe nd au ade ncrete sit	exposi excave bucke ger Core Carbi	ure Si vation Si et R N	C SH B Ro	horing hotcrete ock Bol o suppo	ts ⊻ Wa ort √ Wa ⊳ Wa	ne obs meas ter lev ter out ter infl	sured M Moist L Lo vel W Wet M M Wp Plastic limit H Hig fflow WI Liquid limit R Re	TANCE VS V w S S oderate F F fusal St St fusal VSt V H H F Fr	ery Stiff VD Very De ard iable	nose A Au B Bu I Dense U U D Di nse M Ma Ux Tu	iger san ilk sam idisturb sturbed bisture be sam	ple led sample I sample content nple (x mm)	pr S V: D FI W	Standard S Vane she CP Dynam penetro D Field den /S Water sa	ic cone meter sity	CLASSIFICATION SYMBOLS AND SOIL DESCRIPTION N USCS Y Agricultural	
ł			_	~				XCAVAT	UN L	LOG TO BE READ IN CONJU									_	
Quality Sheet No.	(rte Martens & As			td . 2014		Ph	George St,Horn one: (02) 9476 9	SSOCIATES PTY LTE sby, NSW 2077 Austr 999 Fax: (02) 9476 8 EB: http://www.marte	alia 767		E	ng		ering oreho	l Log - Je	

C	LIE	ΝT	С	addey	Searl &	& Jarman	Pty	Ltd	COMMENCED	23.09.14	COMPLETE) 23.0	9.14			REF	BH10	6
P	RO.	EC	гν	/astewa	ter As	sessment	t		LOGGED	AB	CHECKED	AN				Sheet 1		Ū
s	ITE		L	ot 711, I	DP 112	28593 Sou	ith F	ambula NSW	GEOLOGY	Basalt	VEGETATIO	N Gras	s			PROJECT NO	. P1404330	
	QUIPN					lic Auger			EASTING	-	RL SURFAC	E -					1	
E				ISIONS		n X 1.7m depth			NORTHING	-	ASPECT	Nort	h East				15-20°	
┢	E			ION DA	_		7	MAT	ERIAL DAT	Α				SAI	MPLIN	G & TEST	ING	
		WATER	MOISTURE	DEPTH (M)		(1)	CLASSIFICATION	SOIL NAME, plastic colour, secondar moisture condition, ROCK NAME, grai	y and minor comp consistency/relativ	racteristics, onents, ve density,	CONSISTENCY	DENSITY INDEX	TYPE	DEPTH (M)			LTS AND OBSERVATION	NS
	/ N	I N	М	0.1			SCL	Sandy Clay Loam - Da	ark brown, we organic.	akly structured,			В	0.1- 0.3	4330/10	6/ 0.1-0.3		
	/ N	IN	М	- - - - - - - - - - - - - - - - - - -			CL	Clay Loam - Brown	-	y structured.			В	0.5-0.75	4330/10	\$/0.5-0.75		- - - - - - - - - - - - - - - - - - -
				1.7 				V bit refusal at 1.7	'm on weathe	ered basalt.								- 2.0 - - - - - - - - - - - - - - - - - - -
			IT / ME		UPPORT			MOISTURE DRILLING		STENCY DENSITY			resting				CLASSIFICA	
	N BH HA S CC (V TC T	Natura Existii Backho Hand a Spade Concre /-Bit	I exposing exca be buck luger te Core	ure Si vation Si et R N	H Shorir C Shotci B Rock I II No su	ng N Nor rete X Not Bolts ⊻ Wa ⊖ Wa → Wa	e obs measi ter levi ter out ter infl	arved D Dry RESISTA ured M Moist L Low el W Wet M Mode Wp Plastic limit H High flow WI Liquid limit R Refus Dw	NCE VS Ve S Si State F Fi St Sti al VSt Ve H Ha F Fri	ary Soft VL Very Loos oft L Loose mm MD Medium I ff D Dense ary Stiff VD Very Dens ard able	ose A Au B Bu Dense U Un D Dis se M Mo Ux Tul	ger sample k sample disturbed sturbed s isture co be sampl	ble d sample ample ntent e (x mm)	pp S VS DC FD WS	Standard Vane she P Dynami penetro Field den S Water sa	c cone meter sity	SYMBOLS A	ND RIPTION
L						EXCAVATI	ON L	OG TO BE READ IN CONJUN	CTION WITH A	ACCOMPANYING REP	ORT NOTES	AND A	BBRE	VIATIO	NS			
Quality Sheet No. 4	(rte Martens & As				20 G Phor	eorge St,Horn ne: (02) 9476 9	SOCIATES PTY LTD sby, NSW 2077 Austra 999 Fax: (02) 9476 876 EB: http://www.marten:	67		E	ng		ering oreho	Log - le	

			.		addey S						y Li	td		23.09.14		COMPLET		23.09.1	4			REF		BH107	,
	RO. ITE	EC	ان		astewa ot 711. I						Pa	mbula NSW	GEOLOGY	AB Basalt		VEGETATI		AN Grass				Sheet 1 PROJECT		1 P1404330	
	QUIPN	IENT	Г		,-	_	draulic						EASTING	-		RL SURFA	-	-							
E								K 1.2	m depth	ı			NORTHING	-		ASPECT		North E	ast					10°	
					DEPTH(M)			-	GRAPHIC LOG		CLASSIFICATION	MATERIA SOIL NAME, plasti colour, seconda moisture condition, ROCK NAME. gra	consistency/relati	PN racteristics, ionents, ve density,		CONSISTENCY			ТҮРЕ	DEPTH (M)			SULTS		3
	/ N	il	Ν	М	0.1					s	CL	Sandy Clay Loam - D		akly structure	ed,				В	0.1- 0.3	4330/107	/ 0.1-0.3			
,	/ N	11	N	Μ	- - - - - - 1.0						CL	Clay Loam - Brow	organic. n, moderately	v structured.					В	0.5- 4	4330/107	/0.5-0.7			- - - - - - - - - - - - - - - - - - -
┢					1.2			-					D												
	N X	Natu Exis	ural ex sting e	/ MET	re SI ation S(ORT		WATE N NG	one c			G CONSI INCE VS V	STENCY DENS Py Soft VL	SITY Very Loo: Loose	se A A		3 & TESS sample	STING	pp P		petrometer		CLASSIFICATI SYMBOLS AND SOLL DESCRIF	D
	HA I S CC C	Hand Spac Conci /-Bit ungs	d aug de crete (t sten (Corer Carbio	Ni	i N	ock Bo o supp	port	÷ ∢ w ⊳ w	ater ater	inflow	Wp Plastic limit H High w Wl Liquid limit R Refu	St St sal VSt V H Ha F Fri	ff D ery Stiff VD N urd able	Medium D Dense /ery Dens	D D Se M N Ux T)isturb loistu ube s	urbed sam red sam re conte ample (x	ple ent x mm)	DCP FD F WS V	√ane shea Dynamia penetror Field dens Water sar	cone neter ity		N USCS Y Agricultur	al
₽			_	7				EX	CAVAT	NOI	I LOO	G TO BE READ IN CONJUN	CTION WITH A	CCOMPANYIN	IG REP	ORT NOTE	S AN	ID ABI							
Quality Sheet No.	(rte Martens & Ass			Ltd.	2014			20 (Pho	/ARTENS & As George St,Horn ne: (02) 9476 9 tens.com.au W	sby, NSW 2077 999 Fax: (02) 9	' Austral 476 876	67			E	-		erin reh	-	_og -	

			-	addey S					Ltd			23.09.14		COMPLET		09.14			REF	BH108
	ROJE TE	:C1	-	astewa ot 711, E					ambula NSW		GEOLOGY	AB Basalt		VEGETATI	AN ON Gra				Sheet 1 PROJECT NO	
	UIPME	NT		,	Hydrau						EASTING	-		RL SURFA	_					
EX				SIONS		n X 0.8	8m depth					-		ASPECT	Noi	th East				2-5°
	EX			ION DA	-	u		z		MAT	ERIAL DA	Α					SA	MPLIN	G & TEST	ING
METHOD	SUPPORT	WATER	MOISTURE	DEPTH (M)	M DRILLING		GRAPHIC LOG	CLASSIFICATION	SOIL NAME colour, s moisture cc ROCK NA	E, plastici econdary ondition, o ME, grain strengt	DESCRIPTIC ity or particle cha y and minor com consistency/relat n size, texture/fal h, weathering.	racteristics, ponents, ve density, pric, colour		CONSISTENCY	DENSITY INDEX	ТҮРЕ	DEPTH (M)		DDITIONAL	LTS AND OBSERVATIONS
V	Nil	N	м	0.1				SCL	Sandy Clay Loa		rk brown, we rganic.	eakly structu	ured,			В	0.1- 0.3	4330/10	3/ 0.1-0.3	
v	Nil	N	м	- - - 0.8				CL	Clay Loam -	Browr	n, moderatel	y structured				В	0.5- 0.75	4330/10	3/ 0.5-0.75	
				- 1.0					V bit refusa	at 0.8	m on weath	ered basalt.								1.
				-																ι <u>τ</u>
				-																
				-																
				2.0																2
				_																
				_																
				_																
				3.0																3.
				-																
				-																
				-																
				4.0																4_
				-																
	X E BH Ba HA Ha	atural e xisting ackhoe and au oade ncrete Bit ngsten	exposi excav bucke ger corei Corei	ure SH vation SC et RE Nil	JPPORT Shorin Shotc Rock No su	ng srete Bolts ipport	⊥ - Wat	e obse measu er leve er out	erved D Dry R ured M Moist L el W Wet M Wp Plastic limit H flow WI Liquid limit R ow	High Refus	NCE VS V srate F F St S' al VSt V H H F Fr	ery Soft VL oft L rm MD iff D ery Stiff VD ard iable	Loose Medium E Dense Very Dens	se A A B B Dense U U D D Se M M Ux T	uger sam ulk samp indisturbed isturbed oisture c ube samp	e d sample sample ontent ble (x mm)	pr S V: D FI W	Standard S Vane she CP Dynam penetro D Field den /S Water sa	c cone meter sity	4 CLASSIFICATION SYMBOLS AND SOIL DESCRIPTION NUSCS Y Agricultural
4		_	_			EX	CAVATI	ON L	OG TO BE READ IN CO					ORT NOTE	S AND					
Quality Sheet No.				rte Martens & Ass			. 2014		mail	20 G Phon	ARTENS & A eorge St,Horn le: (02) 9476 9 ens.com.au W	sby, NSW 20 999 Fax: (02	77 Austral) 9476 876	67		Ε	ng		ering oreho	ı Log - de

СГ	IEN	Т	Ca	addey S	Searl	& J	arman	Pty	Ltd			cc	MMENCED	23.09.14		COMPLET	ED 2	23.09.14			REF	BH109
PF	ROJE	СТ	W	astewa	ter A	Asse	ssment					LO	GGED	AB		CHECKEI	, כ	AN			Sheet 1	
Sľ	TE		Lo	ot 711, I	DP 1	128	593 Sou	th P	Pamb	oula NSW	1	GE	OLOGY	Basalt		VEGETAT		Grass			PROJECT N	D. P1404330
				SIGNO	-	aulic A								-		RL SURF	-				SLOPE	15.00°
						um X 1	1.6m depth				N			- A		ASPECT		North East	S/		G & TES	15-20°
METHOD	SUPPORT	WATER	MOISTURE	DEPTH (M)	DRILLING		GRAPHIC LOG	CLASSIFICATION		o mo	MATI IL NAME, I colour, sec isture cond DCK NAME	ERIAL DI plasticity o condary and lition, cons	ESCRIPTIC r particle cha d minor comp sistency/relati ze, texture/fat	PN racteristics, ionents, ve density,		CONSISTENCY	DENSITY INDEX	ТҮРЕ	DEPTH (M)		RESU	LTS AND OBSERVATIONS
V	Nil	N	М	0.1				SCL		Sandy Cla	iy Loam	- Dark I orga		akly stru	ictured,							
v	Nil	N	м	- - - - - 1.0				CL		Clay L	.oam - B		noderately	r structur	red.			В	0.5- 0.75	4330/10	9/ 0.5-0.75	
v	Nil	N	м	- - - 1.6				CL		Clay L	.oam - B	Brown, n	noderately	structur	ed.			В	1.2- 1.4	4330/10	9/ 1.2-1.4	
				_						V bit r	efusal a	at 1.6m	on weathe	ered basa	alt.							
		MENT	/ ME		UPPOF 1 Sha		WATER N Non			MOISTURE		LLING			DENSITY VL Very Lo		IPLING Augers	& TESTIN				2.1 2.1 3.1 3.1 3.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4
E F S O N	K E BH Ba HA Ha	xisting ackhoe and au bade ncrete Bit ngsten	excav bucke ger Core Carbi	vation S(et RI Ni r	C Sho B Roc	tcrete :k Bolt: suppor	s ⊻ Not t ⊻ Wat - Wat → Wat	measu er leve er out	ured el flow ow	M Moist W Wet Wp Plastic WI Liquid li	L M limit H imit R	Low Moderate High Refusal	S S F F St St VSt V H H F Fr	oft rm ff ery Stiff adle	L Loose MD Medium D Dense VD Very Der	B Dense U D nse M Ux	Bulk sar Undistu Disturbe Moisture Tube sa	nple rbed sample ed sample e content imple (x mn	S V D 1) F W	Standard S Vane she CP Dynam penetro D Field der /S Water sa	ic cone meter isity	
+						E	XCAVATI	ON L	OG T	O BE READ	IN CON	JUNCTI	ON WITH /	CCOMPA	ANYING REF	PORT NOT	ES AN					
Quality Sheet No.				rte Martens & Ass			d.2014					20 Geor Phone: (ge St,Horn 02) 9476 9	sby, NSW 999 Fax:	ES PTY LTD 2077 Austra (02) 9476 87 www.marter	alia '67		E	ng	-	ering oreho	y Log - ole

9 Attachment C – Groundwater Bore Log

WaterNSW Work Summary

3W110974

Licence:

Licence Status:

Authorised Purpose(s): Intended Purpose(s): STOCK, DOMESTIC

Final Depth: 55.80 m Drilled Depth: 55.80 m

Work Type: Bore Work Status: Supply Obtained Construct.Method: Rotary Air Owner Type: Private

Commenced Date: Completion Date: 20/03/2009

Contractor Name: Gordon Noel BRIGGS Driller: Gordon Noel Briggs Assistant Driller:

Property: GWMA: GW Zone:

Standing Water Level (m): 14.900 Salinity Description: Yield (L/s): 0.120

Site Details

Site Chosen By:

County Form A: AUCKLAND Licensed:

Northing: 5905879.000 Easting: 755260.000

Parish YOWAKA Cadastre 5//262002

Region: 10 - Sydney South Coast River Basin: - Unknown Area/District:

CMA Map: Grid Zone:

Scale:

Coordinate Source: Unknown

Latitude: 38°57'30.9'S Longitude: 149°52'01.1'E

MGA Zone: 55

Construction

Elevation: 0.00 m (A.H.D.) Elevation Source: Unknown

GS Map: -

legative depths indicate Above Ground Level; C-Cemented; SL-Slot Length; A-Aperture; GS-Grain Size; Q-Quantity; PL-Placement of Gravel Pack; PC-Pressure remented; S-Sump; CE-Centralisers

Glued		
otted, PVC, SL	: 80.0mm, A: 2.	.00mm
		ued ted, PVC, SL: 80.0mm, A: 2.

onstruction

egative depths indicate Above Ground Level; C-Cemented; SL-Slot Length; A-Aperture; GS-Grain Size; Q-Quantity; PL-Placement of Gravel Pack; PC-Pressure emented; S-Sump; CE-Centralisers

lole	Pipe	Component	Туре	From (m)	To (m)	Outside Diameter (mm)	Interval	Details
1		Hole	Hole	0.00	2.70	185	S 11	Rotary Air
1		Hole	Hole	2.70	55.80	182	0	Down Hole Hammer
1	1	Casing	Pvc Class 9	-0.30	55.80	140	 3 N	Seated on Bottom, Glued
1	1	Opening	Slots - Vertical	18.00	55.00	140	0	Casing - Machine Slotted, PVC, SL: 80.0mm, A: 2.00mm

Vater Bearing Zones

m)	To (m)	Thickness (m)	WBZ Type	S.W.L. (m)	D.D.L. (m)		Hole Depth (m)	Duration (hr)	Salinity (mg/L)
19.80	33.50	13.70	Unknown	14.90		0.12		02:00:00	1.0

rillers Log

rom m)	To (m)	Thickness (m)	Drillers Description	Geological Material	Comments
0.00	0.60	0.60	TOPSOIL	Topsoil	
0.60	2.70	2.10	CLAY RED	Clay	
2.70	19.80	17.10	RHYOLITE RED	Rhyolite	
19.80	23.70	3.90	RHYOLITE RED, FOULTED ZONES	Rhyolite	- A 2
23.70	55.80	32.10	RHYOLITE BLUE	Rhyolite	

*** End of GW110974 ***

Varning To Clients: This raw data has been supplied to the WaterNBW by drillers, licencees and other sources. WaterNBW does not verify the accuracy of this data. The data is presented for use by you at you own risk. You should consider verifying this data before relying on it. Professional hydrogeological advice should be sought in interpreting and using this data.

10 Attachment D – Pathogen Transport Modelling

	Vers Ga	raner -		ansport As:	marten
			Sun	te 201, Level 2, 20 George	e, Hornsby, NSW 2077, Ph: (02) 9476 9999, mail@martens.com.au, www.martens.c
JEC	CT DETAILS				
ect	Prop	Developn		28593, South Pambula,	I, NSW Ref. No. P1404330JS05V01
hor	MI	-	Reviewed		
Ĺ			1		
1:0	CONTAMINANT	BOUNDARY C	ONDITIONS		
	Initial Concentrat	tion of Viruses ([,]	viruses/L)	1.00E+07	(<i>M</i> ₀)
	Magnitude of Rec	duction		1.00E-07	$\left(\frac{M_t}{M_0}\right)$
					(v /
	Aquifer Boundary			·	
	Minimum Ground			12	(T_l)
	Maximum Ground			22	(T_h)
	Saturated Hydraulic Hydraulic Gradient (lay)	0.16	(K) (i)
	Effective Porosity			0.16	(l) (η_e)
					Cie?
2:1	ASSESSMENT				
	Modelled Predict	tors Decay rate			
	Temperature (°C)	coefficient (k)		Travel Distance (m)	
	12.0	0.17	92	73.9	Virus Transport & Setback Distances
	13.0 14.0	0.22	72 59	57.6 47.2	
	14.0	0.27	59	47.2	(E) 90
	16.0	0.32	43	34.7	(Lu 90 10 10 10 10 10 10 10 10 10 1
	17.0	0.42	38	30.6	- 00 - C
	18.0	0.47	34	27.4	S(S 40
	19.0	0.52	31	24.8	U Travel Time (days)
	17.0			22.7	P 10 - Travel Distance (m)
	20.0	0.57	28		
		0.57 0.62	28 26	20.9	0.0 5.0 10.0 15.0 20.0 25 Groundwater Temperature (oC)

11 Attachment E – Nutrient Modelling Calculations

